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------------------------------------------------------ABSTRACT--------------------------------------------- 
Many emerging Web and Internet applications are based on a group communication 
model. Securing group communication is an important Internet design issue. A Key Graph 
approach has been used to implement the group key management and it is used to provide 
secure group communication. The group key management can be done in two ways: 1. 
Individual rekeying 2. Batch rekeying. Individual Rekeying is the process of rekeying after 
each join or leave request. The problem with individual rekeying is inefficiency and out - 
of - sync problem between keys and data. A batch rekeying using MARKING 
ALGORITHM can overcome the problems faced in the individual rekeying. The paper 
applies Batch rekeying by Marking Algorithm on the B- Tree (2-3 trees) and NSBHO (Non 
Splitting Balancing Higher Order) tree. The Analyzing done on the key server’s processing 
cost for batch rekeying in B-Tree and NSBHO tree. The proposed NSBHO (Non-Split 
Balancing High-Order) tree in which balancing tree after member joining does not involve 
node splitting. The implementation shows that the NSBHO tree has better average-case 
rekeying performance and far superior worst-case rekeying performance than a B-tree. 
 
Keywords - Balanced tree, Dynamic group, Group key management, High-order tree, Secure 
multicast.
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1. INTRODUCTION 
any Internet applications, such as online multiplayer 
gaming, pay-per-view, and group meeting, require 
delivering packets from one or many sources to a 

group of destinations [1][2]. Multicast is often used to 
efficiently deliver the packets to the group members. Thus 
securing group communications (i.e., providing 
confidentiality, authenticity, integrity of messages delivered 
between group members) will become an important Internet 
design issue. One way to achieve secure group 
communication is to have a symmetric key, called group 
key, Shared only by group members. The group key is 
distributed by a key server which provides group key 
management service. Messages sent by a member to the 
group are encrypted with the group key, so that only 
members of the group can decrypt and read the message. 
Compared to the two party communications, a unique 
characteristic of group communications is that group 
membership can change over time: new users can join the 
group and current user can leave or expelled. If a user want 
to join the group, is sends a join request to the key server if 
the request is accepted by the key server, the user shares a 

key called individual key. For group of N users, initially 
distributing the key to all users requires N messages each 
encrypted with an individual key. To prevent a new user 
from reading the past communications (called the backward 
access control) and a departed user from reading the future 
communications (called the forward access control), the key 
server may rekey (change the group key) whenever a group 
membership changes. For large groups, join and leave 
requests can happen frequently. Thus, a group key 
management service should be scalable with respect to 
frequent key changes. It is easier to rekey after a join than a 
leave. After a join, the new group key can be sent via unicast 
to the new member (encrypted with its individual key) and 
via multicast to existing members (encrypted with the 
previous group key). After a leave, however, since the 
previous group key cannot be used, the new group key 
maybe securely distributed by encrypting it with individual 
keys. This straight forward approach, however, is not 
scalable. In particular, rekeying costs 2 encryptions for a 
join and N - 1 encryptions for a leave, where N is current 
group size. The key graph approach has been proposed for 
scalable rekeying. In this approach, besides the group key 
and its individual key, each user is given several auxiliary 
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keys. These auxiliary keys are used to facilitate rekeying. 
Key graph is a data structure that models user-key and key-
key relationships. Key tree is an important type of key graph 
where key-key relationships are modeled as a tree. For a 
single leave request, key tree reduces server processing cost 
to O (logN).  
   Multicast greatly reduces server load and network 
resource consumption by sending one multicast message 
instead of ‘n’ unicast messages to ‘n’ destinations. However, 
multicast traffic also reaches unsubscribed destinations, e.g., 
workstations on the Ethernet where at least one multicast 
destination exists can also receive the multicast packets. To 
prevent eavesdropping and protect the content of multicast 
traffic, multicast packets must be delivered securely so that 
only the intended receivers can decode it and no one else can 
(non group confidentiality). Multicast group is usually 
dynamic, i.e., new members may join in and existing 
members may leave. As a result, the confidentiality 
requirement also includes past confidentiality (a new 
member joining in at time‘t’ can’t decode any multicast 
messages before‘t’ ), future confidentiality (an existing 
member leaving at time ‘t’ can’t decode any multicast 
message after ‘t’), and collusion freedom (no set of deleted 
members can cooperate to decode future multicast 
messages). 
 The simple solution to achieving secure multicast is to 
use a group key to encrypt group communication. When a 
new member joins in or an existing member leaves, the 
group key needs to be replaced (rekeying). The Rekeying 
cost is often measured in terms of client computation cost, 
server computation cost, and message cost. The client 
computation cost is the size of the messages the client has to 
decode, the server computation cost is the size of the 
messages the server has to encrypt, and the message cost is 
the sum of the size of the unicast and multicast messages the 
server sent out. The message cost is usually measured as the 
sum of the number of keys in the unicast and multicast 
messages. We will use the message cost to measure the 
efficiency of the proposed scheme since “communication 
complexity is probably the most important measure, as it is 
the biggest bottleneck in current applications” and the client 
computation cost and server computation cost are 
asymptotically no larger than the message cost. 
 The group key needs to be securely conveyed to the 
group members every time the group key is changed. The 
widely used approach is hierarchical key-tree approach, an 
efficient way to reduce the rekeying cost. Given that the 
underlying tree is balanced, the hierarchical key-tree 
approach achieves logarithmic rekeying costs. However, the 
key tree may become out of balance after inserting/deleting 
members. Once it is unbalanced, the tree remains 
unbalanced until either insertions/deletions bring the tree 
back to a balanced state or some actions are taken to 
rebalance the tree. Balanced tree approaches spread 
rebalance costs over many updates and gives worst-case 
rekeying costs. The 2-3 has best performance for various 
schemes. However, rebalancing a 2-3 tree (order-3 B-tree) 
after insertion is achieved by node splitting, which is 
expensive in terms of the message cost. The Paper reports an 
NSBHO (Non-Split Balancing High-Order) tree which does 
not use node splitting to balance the tree. The worst-case 

rekeying cost incurred by a member joining is ‘2h’ and the 
worst-case rekeying cost incurred by a member leaving is d-
1+mh, where h is the tree height, m is the order of the tree, 
and  2/md = . 

2. KEY GRAPH APPROACH 
The key graph approach assumes that there is a single 

trusted and secure key server, and the key server uses a key 
graph for group key management. Key graph is a directed 
acyclic graph with two types of nodes: u-nodes, which 
represent users, and k-nodes, which represent keys. User u is 
given key k if and only if there is a directed path from u-
node u to k-node k in the key graph. Key tree and key star 
are two important types of key graph. In a key tree, the k-
nodes and u-nodes are organized as a tree. Key star is a 
special key tree where tree degree equals group size.  

2.1 Key Tree 
In a key tree, the root is the group key, leaf nodes are 

individual keys, and the other nodes are auxiliary keys. 
Consider a group of 9 user’s u1... u9. A key tree of degree 3 
is shown in Figure 1(a).The Key server follows three 
strategies to distribute the new keys to the remaining users: 
user-oriented, key-oriented, and group-oriented.  Using 
group-oriented rekeying, the key server constructs the rekey 
message and multicasts it to the whole group. 

 
Fig 1: Example of a key tree. 

From the above example, we can see that both the server’s 
computation and communication costs are proportional to 
the number of encryptions to be performed (5 for the first 
example and 4 for the second example). Thus, we use server 
cost to mean the number of encryptions the key server has to 
perform. If the key tree degree is d and there are N users, 
assuming the key tree is a completely balanced tree, the 
server cost is 2 log d N for a join and d log d N -1 for a 
leave.  

2.2 Key Star 
Key star is a special case of key tree where tree root 

degree equals group size. Key star models the 
straightforward approach. In key star, every user has two 
keys: its individual key and the group key. There is no 
auxiliary key. Figure 2(a) shows the key star for 4 users. 
Suppose u4 wants to leave the group (from Figure 2(a) to 
2(b)), the key server encrypts the new group key k1-3 using 
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every user’s individual key, puts the encrypted keys in a 
message and multicasts it to the whole group. Clearly, using 
a key star, the server cost is 2 for a join and N -1 for a leave. 

 
Fig 2: Example of a key star. 

3. INDIVIDUAL REKEYING  
Ideally, a departed user should be expelled from the 

group, and a new user be accepted to the group, as early as 
possible. Thus, the key server should rekey immediately 
after receiving a join or leave request, we call this individual 
rekeying. Individual rekeying, however, has two problems: 
Inefficiency and an out-of-sync problem between keys and 
data. 
3.1. Inefficiency 

Individual rekeying is relatively inefficient for two 
reasons. First, the rekey message has to be signed for 
authentication purpose; otherwise a compromised group user 
can send out bogus rekey messages and mess up the whole 
system. Signing operation is computationally expensive. If, 
for every single request, the key server has to generate and 
sign a rekey message, the signing operation alone will place 
a heavy burden on the key server, especially when requests 
are frequent. 

Second, consider two leaves that happen one after 
another. The key server generates two sets of new keys 
(group key and auxiliary keys) for these two leaves. These 
two leaves, however, might temporally happen so close to 
each other that the first set of new keys are actually not used 
and are immediately replaced by the second set of new keys. 
When requests are frequent, like during the startup or 
teardown of a multicast session, many new keys may be 
generated and distributed, while not used at all. This is a 
waste of server cost. 
3.2 Out-of-Sync Problem 

Individual rekeying also has the following out-of-sync 
problem between keys and data: a user might receive a data 
message encrypted by an old group key, or it might receive a 
data message encrypted with a group key that it has not 
received yet. Figure 3 shows an example of this problem. In 
this example, at time t1, u2 receives a data message 
encrypted with group key GK(2) from u1, but u2 has not 
received GK(2); at time t2, u1 receives a data message 
encrypted with group key GK(0) from u2, but u1’s current 
group key is GK(2). Delay of reliable rekey message 
delivery can be large and variable. Thus, this out-of-sync 
problem may require a user to keep many old group keys, 
and/or buffer a large amount of data encrypted with group 
keys that it has not received. 

 

 
Fig 3: Out-of-sync problem 

4. BATCH REKEYING  
To address the above two problems, we propose the use 

of periodic batch rekeying[1]. In batch rekeying, the key 
server waits for a period of time, called a rekey interval, 
collects the entire join and leave requests during the interval, 
generates new keys, constructs a rekey message and 
multicasts the rekey message. Batch rekeying improves 
efficiency because it reduces the number of rekey messages 
to be signed: one for a batch of requests, instead of one for 
each. Batch rekeying also takes advantage of the possible 
overlap of new keys for multiple rekey requests, and thus 
reduces the possibility of generating new keys that will not 
be used.  
5. MARKING ALGORITHM 

Marking algorithm for the key server to process a batch of 
requests. Obviously, if the key server uses key star, batch 
rekeying is a straightforward extension to individual 
rekeying. Thus, the marking algorithm applies to key tree 
only. We analyze the resulting server processing cost for 
batch rekeying. We use J to denote the number of joins in a 
batch and L to denote the number of leaves in a batch. We 
assume that within a batch, a user will not first join then 
leave, or first leave then join. 
5.1 Marking Algorithm  

Given a batch of requests, the main task for the key server 
is to identify which keys should be added, deleted, or 
changed. In individual rekeying, all the keys on the path 
from the request location to the root of the key tree have to 
be changed. When there are multiple requests, there are 
multiple paths. These paths form a subtree, called rekey 
subtree, which includes all the keys to be added or changed. 
The rekey subtree does not include individual keys. The key 
server cannot control which users might leave, but it can 
control where in the key tree to place the new users. Thus, 
the key server should carefully place the new users (if there 
were any) so that the number of encryptions it has to 
perform is minimized. 

 

         The algorithms as follows  

Case 1: J = L. 
1. Replace leaves by joins. 
2. Mark all the nodes from the replacement  
   locations to the root UPDATE. 
Case 2: J < L 
1. Out of the L leaves, pick J shallowest (smallest  
    height) leaves. 2 Replace these J leaves with the  
    J joins. 
2. Mark all the nodes from the root to the leave and  
    replacement locations UPDATE or DELETE.  
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    Those leaving nodes without joining   
    replacements are marked DELETE. A non-leaf  
    node is marked DELETE if and 
   only if all of its children are marked  
   DELETE. 
Case 3: J > Land L = 0. 
1. Find a shallowest leaf node v. Remove v    
    from the tree. 
2. Construct T, a complete but not necessarily  
    balanced tree [11], that has all  the new users 
    and v as leaf nodes. The other nodes of T are  
    new keys. 
3. Attach T to the old location of v. 
4. Mark all T’s internal nodes NEW and mark all  
    the nodes from the root to the parent of v’s old  
    location UPDATE. 
Case 4: J > Land L > 0. 
1. Replace all leaves by joins. 
2. Find a shallowest leaf node, v, among the  
    replacement locations. Remove   V from the tree. 
3. Construct a complete tree T that has the extra  
    joins and v as leaf nodes. The other nodes of T  
    are new keys. 
4. Attach T to the old location of v. 
5. Mark all T’s internal nodes NEW and mark all  
    the keys from the replacement locations (except  
    the old location of v) to the root UPDATE. 

After marking the key tree, the key server removes all 
nodes that are marked DELETE. The nodes marked 
UPDATE or NEW form the rekey subtree. The key server 
then traverses the rekey subtree, generates new keys, 
encrypts every new key by each of its children, constructs 
and multicasts the rekey message. It is not hard to see that 
the running time of the marking algorithm is   O ((J + L) logd 
N + N).  
5.2 Keeping the Key Tree Balanced 

To achieve best performance, a key tree should be kept 
more or less balanced. Our marking algorithm aims to keep 
the tree balanced across multiple batches, by adding extra 
joins to the shallowest leaf node of the tree in each batch. 
However, depending on the actual locations of the requests, 
even if the key tree starts complete and balanced, it is 
possible that the key tree may grow unbalanced after some 
number of batches. For example, many users located close to 
each other in the key tree may decide to leave at the same 
time. It is impossible to keep the key tree balanced all the 
time, without incurring extra cost.  

 
6. 2-3 TREE or B-TREE (of order m=3) 

Definition: A 2-3 tree is a tree in which each vertex which 
is not a leaf has 2 or 3 sons, and every path form the root to 
a leaf is of the same length. Note that the tree consisting of 
single vertex is a 2-3 tree. Let T be a 2-3 tree of height ‘h’. 
The number of vertices of T is between 2h+1-1 and (3h+1-1)/2, 
and the number of leaves is between 2h and 3h. 

 

 
Fig 4: Examples for 2-3 Trees. 

A 2-3 tree can represent a linearly ordered set S by 
assigning the elements of the set to the leaves of the tree. We 
can use E[l] to denote the element stored at leaf ‘l’. We can 
use 2-3 trees to implement dictionaries (Insert, Delete, 
Member), Priority Queue (Insert, Delete, Min), Mergable 
Heap (Insert, Delete, Union, Min), Concatenable Queue 
(Insert, Delete, Find, Concatenate, Split). Depends on the 
application we assign the elements of set to leaves of the 
tree. For ex: In case dictionary, we assign the elements in 
increasing order from left to right. At each vertex ‘v’ which 
is not a leaf, we need two additional pieces of information. L 
[v] and M [v]. L [v] is the largest element of S assigned to 
the sub tree whose root is the leftmost son of v; M [v] is the 
largest element of S assigned to the sub tree whose root is 
the second son v. The values of L and M attached to the 
vertices enable us to start at the root and search for an 
element in a manner analogous to binary search. The time to 
find any element is proportional to the height of the tree 
(h=O (logn)). In all other cases no restriction in order to 
assign the elements as leaves. 
6.1    Insertion of new element into a 2-3 Tree  

To insert a new element ‘a’ into a 2-3 tree we must locate 
the position for the new leaf ‘l’ that will contain ‘a’. This is 
done by trying to locate element a in the tree. Assuming the 
tree contains more than one element, the search for ‘a’ 
terminates at a vertex ‘f’ such that ‘f’ has either two or three 
leaves as sons. 

If ‘f’ has only two leaves l1 and l2, we make ‘l’ a son of ‘f’. 
If a < E[l1], we make l the leftmost son of ‘f’ and set L[f]=a 
and M[f]=E[l1]; if E[l1]<a<E[l2], we make l the middle son 
of ‘f’ and set M[f]=a; if E[l2]<a, we make ‘l’ the third son of 
‘f’. The L and M values of some proper ancestors of ‘f’ may 
have to be changed in the latter case. Now suppose ‘f’ 
already has three leaves, l1, l2, and l3. We make ‘l’ the 
appropriate son of ‘f’. Vertex ‘f’ now has four sons. To 
maintain the 2-3 tree property, we create a new vertex ‘g’. 
We keep the two left most sons as sons of ‘f’, but change the 
two right most sons into sons of ‘g’. We then make ‘g’ a 
brother of vertex ‘f’ by making ‘g’ a son of the father of ‘f’. 
If the father of ‘f’ had two sons, we stop here. If the father of 
‘f’ had three sons, we must repeat this procedure recursively 
until all vertices in the tree have at most three sons. If the 
root is give four sons, we create a new root with two new 
sons, each of which has two of the four sons of the former 
root. 
 
Algorithm 6.1: Insertion Operation 

Step 1: If T consists of a single leaf ‘l’ labeled ‘b’, then 
create a new root r'. Create a new leaf ‘v’ labeled ‘a’. Make 
‘l’ and ‘v’ sons of r', making ‘l’ the left son if b<a, 
otherwise, making ‘l’ the right son. 
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Step 2: If T has more than one vertex, let f=SEARCH (a, 
r), where SEARCH is the procedure described in successive 
algorithms. Create a new leaf ‘l’ labeled ‘a’. If ‘f’ has two 
sons labeled b1 and b2, and then make ‘l’ the appropriate son 
of ‘f’. Make ‘l’ the left son if a<b1, the middle son if 
b1<a<b2, the right son if b2 <a. If ‘f’ has three sons, make ‘l’ 
the appropriate son of ‘f’ and then call ADDSON (f) to 
incorporate ‘f’ and its four sons into T. ADDSON is the 
procedure described next. Adjust the values of L and M 
along the path from ‘a’ to the root to account for the 
presence of ‘a’. 
Algorithm 6.2 SEARCH (a, r) 
{ 
if any son of r is a leaf then return r; 
  else 
     { 
      let si be the ith son of r; 
          if a<=L[r] then return SEARCH (a, s1); 
              else 
   if r has two sons or a<=M[r] then return   
                SEARCH(a, s2); 
      else 
                      return SEARCH(a, s3); 
     } 
} 
Algorithm 6.3 ADDSON (v) 
{ 
  create a new vertex v'; 
  make the two rightmost sons of v the left and  
  right sons of v'; 
if v has no father then 
   { 
     create a new root r; 
     make v the left son and v' the right son of r; 
   } 
else 
   { 
      let ‘f’ be the father of v; 
      make v' a son of ‘f’ immediately to the right  
      of v; 
      if ‘f’ now has four sons then ADDSON(f); 
   } 
} 

 
Fig 5:  (a) 2-3 Tree before insertion. 

  
(b) 2-3 Tree after inserting 3 in fig 9 a. 

 
Fig5: continues (c) 2-3 Tree after inserting 4 in 5a. 

 
 

6.2    Deletion operation 
An element ‘a’ can be deleted from a 2-3 tree in 
essentially the reverse of the manner by which an element 
is inserted. Suppose element ‘a’ is the label of leaf ‘l’. 
There are three cases to consider. 

CASE 1: If ‘l’ is the root, remove ‘l’. 
CASE 2: If ‘l’ is the son of a vertex having three sons, 

remove ‘l’. 
CASE 3: If ‘l’ is the son of a vertex ‘f’ having two sons ‘s’ 

and ‘l’, then there are two possibilities: 
    (a). ‘f’ is the root. Remove ‘l’ and ‘f’, and  
            leave the remaining son ‘s’ as the  root. 
     (b). ‘f’ is not the root. Suppose ‘f’ has a brother ‘g’ to its 

left. A brother to the right is handled similarly. If ‘g’ 
has only two sons, make ‘s’ the right most son of ‘g’, 
remove ‘l’, and call the deletion procedure 
recursively to delete ‘f’. If ‘g’ has three sons, make 
the right most son of ‘g’ be the left son of ‘f’ and 
remove ‘l’ from the tree. 

 
Fig 6:  2-3 Tree after deleting of 4 from fig 9 c. 

 

 
Fig 7: Node sk1 splits into nodes sk1' and sk1". B-tree 

order m=3. 
 

6.3 Splitting One Node Costs m+1 Multicast Messages 

Rebalancing a B-tree after insertion is achieved by node 
splitting. While the rekeying message cost is one multicast 
message per tree level without node splitting, it requires 
m+1 multicast messages per level with node splitting. Above 
figure 7 shows an example of node splitting. Since the B-tree 
order is equal to 3, an internal node can have at most three 
children. Therefore, node sk1 needs to be split into two 
nodes, sk1' and sk1". The subgroup keys, sk1' and sk1", 
should be randomly generated and can’t be the same as sk1. 
Otherwise, assume sk1'= sk1, the members in the subgroup 
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sk1" know sk1, which gives them the ability to trace the 
subgroup keys from sk1' (=sk1) up and eventually to get the 
group key, even if, later on, they leave the group. To achieve 
further confidentiality, the server could change sk1' =sk1) 
when a member in the subgroup sk1" leaves. However, since 
sk1' (=sk1) is not on the path from the root to the members in 
sk1", changing sk1' (=sk1) requires the server to remember 
which keys out of the path are known by the members in the 
subgroup sk1". This causes the rekeying procedure to 
become complicated and may raise the rekeying cost to as 
high as n (when a leaving member knows many subgroup 
keys out of the path). 

Following nodes splitting, the new subgroup keys sk1' and 
sk1" are distributed in four multicast messages, sk2{sk1� 
sk1'}, sk3{sk1� sk1'}, sk4{sk1� sk1"}, and sk5{sk1� sk1"}. 
Notice that we can’t use sk1{sk1� sk1'}and sk1{sk1� sk1"} 
because the members in the subgroups sk1' and sk1" know 
sk1 and can decrypt both messages. Therefore, splitting one 
node requires m+1 multicast message. Since insertion may 
split up to h nodes and a unicast message of size h is used to 
tell the new member the subgroup keys, the worst-case 
rekeying cost for inserting a new member is (m+2)h.  

7. NSBHO (NON-SPLIT BALANCING HIGH-ORDER) 
TREE 

In this section, we first give the definition of the NSBHO 
tree[2], then, we compare the height of the NSBHO tree with 
that of the standard B-tree of the same order. The algorithm 
for inserting an external node into the NSBHO tree and 
removing an external node from NSBHO tree is discussed in 
next successive sections. 

We call the nodes for group member’s external nodes. 
Square nodes are external nodes and all other nodes are 
internal nodes. We define the level of node ‘x’ as 
x.level=x.parent.level+1 and root. Level=0. Assuming that 
‘h’ is the height of the tree (the external nodes are excluded), 
then the external nodes are at level ‘h’. In following figure, 
the external nodes are at level 3 and the tree height is 3. 

 
Fig.8: An NSBHO tree of order 3. The shaded nodes are in 

the special path (SP). The tree height h=3(the external 
nodes are excluded). 

 

Definition: An empty tree is an NSBHO (Non-Split 
Balancing High-Order) tree of order m. A tree with only one 
external node and no internal nodes is an NSBHO tree of 
order m. If an NSBHO tree of order m is not empty and has 
more than one external node, it has the following properties 
(d =m/2): 
P1. The root has at least two children and at most m 
children. 
P2. All external nodes are at the same level. 

P3. All internal nodes other than the nodes in special path 
(defined below) and the root have at least d children and at 
most m children. 
P4. There is at most one special path. 
P5. A special path (SP) is a sequence of internal nodes, (z0, 
z1, . . . , zk), where zi is an ancestor of zi-1 for 0<= i < k, zi 
has at least one child and at most d-1 children for 0<= i<= 
k, and z0 is not the root. 

Above figure. 8 give an example of an NSBHO tree of 
order 3. The shaded nodes are in special path. Node z0 is the 
parent certainly an ancestor, of node z1. The difference 
between the NSBHO tree and the standard B-tree is that the 
NSBHO tree is not a search tree and it allows a special path 
on which the nodes do not satisfy the property of a standard 
B-tree node. 
 
7.1. Height of the NSBHO Tree 
 
Lemma 1. Let h be the height of an order-m NSBHO tree, n 
be the number of external nodes, and d =m/2 . 
1. mh >= n >=dh-1+ 1, 
2. logd(n-1) +1>=h>= logmn. 
 
      Proof. We first prove the upper bound on n. Level 0 has 
one node, level 1 has at most m nodes, level 2 has at most 
m2 nodes, . . . , level i has at most mi nodes. Hence, there are 
at most mh external nodes. 
Now, we prove the lower bound on n. Level 0 has one node. 
We claim that level i (i > 0) has at least di-1+1 node. We 
prove this claim by induction. Since the root is never in the 
special path, level 1 has at least two nodes. Assume level i-1 
has at least di-2+1 node. At most one of them may be in the 
special path (Definition 1). The nodes not in the special path 
have at least d children per node. Thus, level i has at least di-

1+1 nodes. This proves the lower bound on n. The bound on 
h follows the bound on n.  
Lemma 2. Let h be the height of an order-m B-tree, n be the 
number of external nodes, and d=m/2 . 
 1.mh >= n >= 2dh-1, 
 2.logd(n/2)+1>=h>=logmn. 

Proof. It is easy to see that mh>= n since each internal 
node can have at most m children. Since all the internal B-
tree nodes except the root have at least d children and the 
root has at least two children, the minimum number of nodes 
at level 0, 1, 2, 3, . . . , h is 1, 2, 2d, 2d2, . . . , 2dh-1, 
respectively. Therefore, there are at least 2dh-1 external 
nodes. The bound on h follows the bound on n. 
 
7.2. Insert an External Node 
When a new member joins the group, an external node z is 
created for the new member and is inserted into the NSBHO 
tree. The general idea is to create a chain of nodes with z as 
the tail and then attach the head of the chain as a child of a 
suitable internal node of the current NSBHO tree. The 
purpose of the chain is to put z at the correct level of the 
external nodes, thus the length of the chain is such that the 
new external node z is at the same level as the existing 
external nodes. 
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Fig.9: An external node z is inserted into the NSBHO tree 
specified in 4.1 using the insertion point. (a) z0, (b ) z1, (c ) 
root. The resulting trees at (a) and (c) are not NSBHO 
trees. The resulting tree at (b), however, is an NSBHO tree. 

 
The key is to find a suitable insert point (internal node) 

such that the resulting tree is still an NSBHO tree. When the 
special path SP is not empty, a node belongs to SP with the 
largest level is the suitable insert point. Recall that 
x.level=x.parent.level+1 and root. level=0. In Fig 13, the 
special path is (z0 , z1 ), z0.level=1, and z1.level=2, thus z1 
is the suitable insert point. Fig. 13b shows the resulting tree 
using z1 as the insert point. One may verify that it is an 
NSBHO tree. z0 can’t be used as the insert point because, 
otherwise, the resulting tree (as shown in Fig. 13a) has two 
special paths, (z1) and(x0).The root can’t be used as the 
insert point either because, otherwise, the resulting tree (as 
shown in Fig. 13c) has two special paths, (z0,z1) and (x0 , 
x1 ). When the special path SP is empty, an arbitrary internal 
node that has fewer than m children can be the insert point. 
When all the internal nodes are full (i.e., having m children 
each), a new root will be created which becomes the insert 
point. 

The algorithm for inserting an external node z is listed 
here. If the tree is empty, z becomes the root. Otherwise, 
getInsertPoint algorithm is invoked. If getInsertPoint returns 
null, a new root y is created and the current root becomes a 
child of the new root. Now, y has fewer than m children. A 
chain of internal nodes (x0, x1, . . ., xl ) is created , where 
xi=xi+1.parent for 0<=i < l, x0.level=y.level+1, and 
xl.level=h-1. The purpose of the chain is to put z at the 
correct level of the external nodes. The new external node z 
becomes a child of xl and x0 becomes a child of y. In the 
case of y.level=h-1, there is no need to create a chain and, 
thus, z itself becomes a child of y. getInsertPoint algorithm 
returns null if there is no internal node or all internal nodes 
are full. If SP is not empty, a node belongs to SP with the 
largest level is returned. Otherwise, a nonfull internal node 
does not belong to SP is returned. 
 Special Path (SP) can be maintained by a simple array of 
size h. Adding (removing) a node to (from) SP can be done 
in O(1) time. Returning the node belongs to SP with the 
largest level is the key to making the insertion algorithm 
work. 
 
Algorithm for inserting an External Node ‘z ‘, where ‘z’ 
is an external node. 
 
Algorithms 7.1 insert (TreeNode z) 
{ 
    If (root==null){root=z;return;} 
    TreeNode y=getInsertPoint (); 
          If(y==null) 
              {  y=new TreeNode; 

                 The Current root becomes a child  
                 of y; 
    root=y; 
 } 
 create a chain of nodes as described; 
 attach z to the end of the chain; 
 The root of this chain becomes a  
                child of y; 
} 
 
Algorithm 7.2 getInsertPoint () 
{      If(no internal node or all internal nodes  
           are full) 
           return null; 
              if(SP is not empty) 
                  return the node belongs to SP  
                  with the largest level; 
     return an arbitrary non-full  
                   internal node does not belongs  
                   to SP. 
} 
 
7.3. Remove an External Node 
No rebalancing is needed after an external node z is 
removed if the parent of z is not one child short (i.e., if 
z.parent is in SP, z.parent should have at least one child and, 
if z.parent is not in SP, z.parent should have at least d 
children). The tree rebalancing is carried out only when 
z.parent is one child short. If z.parent is in SP, “one child 
short” means z.parent has no children left and, thus, z.parent 
can be removed, which causes z.parent.parent to lose a child. 
We need to move one level up the tree and check 
z.parent.parent to see whether or not rebalancing is 
necessary there. If z.parent is not in SP, we will use the 
standard B-tree technique (i.e., borrowing a child from 
sibling or merging z.parent with its sibling). If it is possible 
for z.parent to borrow a child from its sibling, rebalancing 
ends. Merging z.parent with its sibling causes z.parent.parent 
to lose a child. Thus, we need to move one level up and 
check z.parent.parent. Due to the existence of SP, 
z.parent.parent may have only one child. In this case, 
borrowing or merging is not possible. However, we can add 
z.parent to SP without violating the NSBHO property and 
there by terminating the rebalancing. 
 
Algorithm for removing a ‘z’, where ‘z’ is an external 
node. 
 
Algorithms 7.3 remove (TreeNode z) 
 {      If(z==root) { root=null; return;} 
        TreeNode pz=z.parent; 
        pz.removeChild (z); 
        z=pz; 
        while (z!=root and (z.size==d-1  
                   or z.size==0)) 
              { pz=z.parent; 
       if(z belongs to SP) 
                     {  remove z from SP; 
              pz.removeChild(z); delete z; 
              z=pz; 
       } 
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       else{  TreeNode sz=richSibling(z); 
      If(sz exists) 
       {move a child from sz to z;  
                                    z=root;} 
             if(pz.size>1) 
                                         { Merge z with a  
                                             sibling of z; z=pz; } 
             else 
   { Add z to SP;  
                                      z=root;} 
             } 
                    } 
 if(z==root and z.size <2 ) 
                 {root= the only child of z; 
          if(root belong to SP) 
                           remove root from SP; 
  } 
} 
 
Algorithm 7.3 describes the procedure for removing an 
external node ‘z’. The siblings of ‘z’ include all the 
children of z.parent except z. The function richSibling(z) 
returns a sibling of sz of ‘z’ such that (sz belongs to SP 
and sz.size >1) or (sz does not belongs to SP and sz.size 
>d ). However, if no such sz exists, richSibling(z) return 
null. 
 
        The while loop is executed when z is an internal node, z 
is not the root, and z is one child short (deficiency). If z is in 
SP , “one child short” means z has no child, thus z can be 
deleted. If z is not in SP , “one child short” means z has d-1 
children. The deficiency can be compensated for by 
borrowing a child from the sibling of z if z has a rich sibling, 
by merging with a sibling if z has at least one sibling, or by 
adding z into SP if z has no sibling. The deficiency may 
propagate one level up, thus we need to move one level up 
to check the parent of z. In other cases, we terminate the 
while loop by setting z to the root. If the deficiency 
propagates up to the root, the tree height is decreased by 
one. 

8. ANALYSIS 
 We analyze the server processing cost for batch rekeying. 
We consider the worst case and average case and compare 
batch rekeying against individual rekeying.  
Key star’s batch rekeying server cost, denoted as RB (N, J, 
L) is: 

{( 01
0),, =+

>−+= ifLJ
LifLJNB LJNR  

 
Thus, our analysis mainly focuses on key trees. For the 
purpose of analysis, we assume that the key tree is a 
complete and balanced tree at the beginning of a batch, and 
that each current user has equal probability of leaving. 
Let d be the key tree degree, N be the group size at the 
beginning of a batch, h be the height of the key tree (h = logd 
N), W(N,d,J, L) be the worst case batch rekeying server 
cost, and E(N,d,J, L) be the average case batch rekeying 
server cost. 
 

8.1 Worst Case Analysis 
The marking algorithm can control where to place joins, but 
cannot control where leaves happen. Thus, worst case 
analysis mainly considers how the locations of leaves affect 
the server cost. Since the marking algorithm takes different 
operations for four cases, worst case analysis is also divided 
into four cases. 
Case 1: J = L. 
For simplicity, we first assume L = d k for some integer k. 
When J = L, the worst case happens when the leaves are 
evenly distributed across the N leaf nodes in the key tree.  
The server cost for this case is:  
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1
1,,,

−
−+==

d
Ld

L
NLdLogLJdNW d  

If L is not some power of d, suppose L = dk + r, 0 < r < (d - 
1) dk, then in the worst case, each of the r additional leaves 
adds d (h - k - 1) to the total cost  
Thus, 
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In other words, if dk < L < dk+1, W= (N, d, J, L) grows 
linearly between W= (N, d, J, dk) and W= (N, d, J, dk+1). 
 

 
Fig 10: Worst case analysis. 
        
Case 2: J < L 
The analysis for this case is similar to the previous case. The 
only difference is that there are only N - (L - J) users left in 
this case. Thus, 
         W < (N, d, J, L) = W = (N, d, L, L) - (L - J) 
Case 3: J > Land L = 0. 
          In this case, the marking algorithm has full control of 
the server cost. It is not hard to see that a complete d- ary 

tree with n leaves is of size 
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Case 4: J > Land L > 0. 
When there are more joins than leaves, the analysis is a 
combination of cases 1 and 3. Thus: 
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8.2 Average Case Analysis 
The server cost depends on the number of nodes belonging 
to the rekey subtree, and the number of children each node 
has. Thus, our technique for average case analysis is to 
consider the probability that an individual node belongs to 
the rekey subtree, and to consider the node’s expected 
number of children. Again, we consider the following four 
cases. 
 

 
Fig 11: Average case analysis. 

 

Case 1: J = L. 
This case forms the basis of our analysis for the other cases. 
Let the root of the key tree be at level 0, and the leaf nodes 
be at level h, where h = logd N. Let T(x) be the sub tree 
rooted at node x and L(x) be the leaf nodes of T(x). 
Consider a node v at level, 0 <= l <= h - 1 (see Figure 19). V 
belongs to the rekey sub tree if and only if there is at least 
one leave in L (v). Assuming every current user has equal 
probability of leaving, there are { N

L  ways to pick L leaving 
users out of N users. Among these many ways, 
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probability that v belongs to the rekey sub tree is 
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Case 2: J < L 
When J < L, we should take into account the probability that 
some nodes might be marked DELETE and pruned from the 
tree. A node v is pruned if and only if all nodes in L(v) are 
leaves and none of them are replaced by joins. Using a 
similar technique as the previous case, we know the 
probability that a node at level l is pruned is 
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Case 3: J > L and L = 0. 
For this case, 
                        E> (N, d, J, 0) = W > (N, d, J, 0) 
Case 4: J > L and L > 0. 
The analysis for this case is a combination of  cases 1 and 
3.Thus: 
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8.3 Batch vs. Individual Rekeying 
In this section, we show that batch rekeying saves server cost 
substantially over individual rekeying. The actual save 
depends on whether the key server uses key star or key tree. 
8.3.1 Key Star 
Let RI (N, J, L) be the cost for processing J joins and L 
leaves individually. Clearly, 
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Thus, the difference between batch rekeying and individual 
rekeying is: 
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The difference is substantial, especially when J and L are 
large.  
 

8.3.2 Key Tree 
We have mentioned that using key tree for individual 
rekeying; the server cost is d logd N - 1 for a leave and 2 logd 
N for a join. 
 

Let S (N, d, J, L) be the server cost for rekeying a batch of J 
joins and L leaves individually. Clearly, 
S (N, d, J, L) = (dL + 2J) logd N – L 

9. RESULTS  
9.1 Table: Comparison Results for various inputs. 
(Assuming initial size of the tree 1000). 
 

(Note: Inputs (i/p): a/b refers among ‘a’ operations, 
 b no. of insertions and a-b deletions). 

 

 

Tree 2-3 Tree NSBHO Tree 
Input Avg Max Avg Max 

3/1 22 25 13 14 
5/2 21 26 16 19 
8/4 23 26 16 19 

10/5 23 25 17 19 
12/6 22 26 15 19 
15/8 23 31 19 19 
18/9 22 31 16 19 
20/1 20 31 15 19 
22/1 22 31 19 19 

25/13 23 31 15 19 
28/14 20 31 16 21 
30/15 21 31 16 21 
34/17 22 31 15 19 
35/18 21 31 15 19 
38/19 22 31 16 19 
40/20 22 31 15 19 
44/22 22 31 15 21 
45/22 22 31 16 19 
48/24 22 31 15 19 
50/25 22 31 16 19 
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9.2. Graphs 
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( a ) 2-3 Tree(B-Tree of order 3) Re keying Message Costs 
for 50 Random Insertions (50%) / Deletions (50%). Initial 
Tree Size is 1000. 
 

NSBTree Order 3
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( b ) NSBHO Tree of order 3.Re keying Message Costs for 
50 Random Insertions (50%) / Deletions (50%). Initial 
Tree Size is 1000.  

10. CONCLUSION 
This paper addressed the scalability problem of group key 

management [1][2]. We identified two problems with 
individual rekeying: inefficiency and an out-of-sync problem 
between keys and data. We proposed the use of periodic 
batch rekeying to improve the key server’s performance and 
alleviate the out-of-sync problem. We devised a marking 
algorithm for the key server to process a batch of join and 
leave requests, and we analyzed the key server’s processing 
cost for batch rekeying. Our results show that batch 
rekeying, compared to individual rekeying, saves server cost 
substantially. We also show that when the number of 
requests is not large in a batch, four is the best key tree 
degree; otherwise, key star outperforms small-degree key 
trees. The hierarchical key-tree approach is an efficient way 
to achieve logarithmic rekeying costs for secure multicast 
key management given that the underlying tree is balanced. 
We have developed an NSBHO tree. Unlike the B-tree 
scheme [10], our NSBHO tree does not use node splitting to 
balance the tree. As a result, the worst-case rekeying cost of 
our NSBHO tree for a new member joining is 2h, while that 
of the B-tree scheme is (m+2)h, where h is the 
corresponding tree height and m is the order of the tree. For 
a member leaving, the B-tree scheme and our NSBHO-tree 
scheme have the same worst case rekeying cost. Our results 
confirm that the NSBHO tree is superior to the B-tree in 

terms of the worst-case rekeying performance. In addition, it 
has better average-case rekeying performance. 
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