
Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

131

--ABSTRACT---
Many emerging Web and Internet applications are based on a group communication
model. Securing group communication is an important Internet design issue. A Key Graph
approach has been used to implement the group key management and it is used to provide
secure group communication. The group key management can be done in two ways: 1.
Individual rekeying 2. Batch rekeying. Individual Rekeying is the process of rekeying after
each join or leave request. The problem with individual rekeying is inefficiency and out -
of - sync problem between keys and data. A batch rekeying using MARKING
ALGORITHM can overcome the problems faced in the individual rekeying. The paper
applies Batch rekeying by Marking Algorithm on the B- Tree (2-3 trees) and NSBHO (Non
Splitting Balancing Higher Order) tree. The Analyzing done on the key server’s processing
cost for batch rekeying in B-Tree and NSBHO tree. The proposed NSBHO (Non-Split
Balancing High-Order) tree in which balancing tree after member joining does not involve
node splitting. The implementation shows that the NSBHO tree has better average-case
rekeying performance and far superior worst-case rekeying performance than a B-tree.

Keywords - Balanced tree, Dynamic group, Group key management, High-order tree, Secure
multicast.

Paper submitted: 22 Aug 2009 Accepted: 28 Oct 2009

1. INTRODUCTION
any Internet applications, such as online multiplayer
gaming, pay-per-view, and group meeting, require
delivering packets from one or many sources to a

group of destinations [1][2]. Multicast is often used to
efficiently deliver the packets to the group members. Thus
securing group communications (i.e., providing
confidentiality, authenticity, integrity of messages delivered
between group members) will become an important Internet
design issue. One way to achieve secure group
communication is to have a symmetric key, called group
key, Shared only by group members. The group key is
distributed by a key server which provides group key
management service. Messages sent by a member to the
group are encrypted with the group key, so that only
members of the group can decrypt and read the message.
Compared to the two party communications, a unique
characteristic of group communications is that group
membership can change over time: new users can join the
group and current user can leave or expelled. If a user want
to join the group, is sends a join request to the key server if
the request is accepted by the key server, the user shares a

key called individual key. For group of N users, initially
distributing the key to all users requires N messages each
encrypted with an individual key. To prevent a new user
from reading the past communications (called the backward
access control) and a departed user from reading the future
communications (called the forward access control), the key
server may rekey (change the group key) whenever a group
membership changes. For large groups, join and leave
requests can happen frequently. Thus, a group key
management service should be scalable with respect to
frequent key changes. It is easier to rekey after a join than a
leave. After a join, the new group key can be sent via unicast
to the new member (encrypted with its individual key) and
via multicast to existing members (encrypted with the
previous group key). After a leave, however, since the
previous group key cannot be used, the new group key
maybe securely distributed by encrypting it with individual
keys. This straight forward approach, however, is not
scalable. In particular, rekeying costs 2 encryptions for a
join and N - 1 encryptions for a leave, where N is current
group size. The key graph approach has been proposed for
scalable rekeying. In this approach, besides the group key
and its individual key, each user is given several auxiliary

Secured Rekeying in B-Tree and NSBHO Tree
P. Ramesh Kumar

Department of Computer Science and Engineering,
V.R.Siddhartha Engineering College, Vijayawada, INDIA

Email: send2rameshkumar@gmail.com
P. Srinivasulu

Department of Computer Science and Engineering,
V.R.Siddhartha Engineering College, Vijayawada, INDIA

Email: srinivasulupamidi@yahoo.co.in

M

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

132

keys. These auxiliary keys are used to facilitate rekeying.
Key graph is a data structure that models user-key and key-
key relationships. Key tree is an important type of key graph
where key-key relationships are modeled as a tree. For a
single leave request, key tree reduces server processing cost
to O (logN).
 Multicast greatly reduces server load and network
resource consumption by sending one multicast message
instead of ‘n’ unicast messages to ‘n’ destinations. However,
multicast traffic also reaches unsubscribed destinations, e.g.,
workstations on the Ethernet where at least one multicast
destination exists can also receive the multicast packets. To
prevent eavesdropping and protect the content of multicast
traffic, multicast packets must be delivered securely so that
only the intended receivers can decode it and no one else can
(non group confidentiality). Multicast group is usually
dynamic, i.e., new members may join in and existing
members may leave. As a result, the confidentiality
requirement also includes past confidentiality (a new
member joining in at time‘t’ can’t decode any multicast
messages before‘t’), future confidentiality (an existing
member leaving at time ‘t’ can’t decode any multicast
message after ‘t’), and collusion freedom (no set of deleted
members can cooperate to decode future multicast
messages).
 The simple solution to achieving secure multicast is to
use a group key to encrypt group communication. When a
new member joins in or an existing member leaves, the
group key needs to be replaced (rekeying). The Rekeying
cost is often measured in terms of client computation cost,
server computation cost, and message cost. The client
computation cost is the size of the messages the client has to
decode, the server computation cost is the size of the
messages the server has to encrypt, and the message cost is
the sum of the size of the unicast and multicast messages the
server sent out. The message cost is usually measured as the
sum of the number of keys in the unicast and multicast
messages. We will use the message cost to measure the
efficiency of the proposed scheme since “communication
complexity is probably the most important measure, as it is
the biggest bottleneck in current applications” and the client
computation cost and server computation cost are
asymptotically no larger than the message cost.
 The group key needs to be securely conveyed to the
group members every time the group key is changed. The
widely used approach is hierarchical key-tree approach, an
efficient way to reduce the rekeying cost. Given that the
underlying tree is balanced, the hierarchical key-tree
approach achieves logarithmic rekeying costs. However, the
key tree may become out of balance after inserting/deleting
members. Once it is unbalanced, the tree remains
unbalanced until either insertions/deletions bring the tree
back to a balanced state or some actions are taken to
rebalance the tree. Balanced tree approaches spread
rebalance costs over many updates and gives worst-case
rekeying costs. The 2-3 has best performance for various
schemes. However, rebalancing a 2-3 tree (order-3 B-tree)
after insertion is achieved by node splitting, which is
expensive in terms of the message cost. The Paper reports an
NSBHO (Non-Split Balancing High-Order) tree which does
not use node splitting to balance the tree. The worst-case

rekeying cost incurred by a member joining is ‘2h’ and the
worst-case rekeying cost incurred by a member leaving is d-
1+mh, where h is the tree height, m is the order of the tree,
and  2/md = .

2. KEY GRAPH APPROACH
The key graph approach assumes that there is a single

trusted and secure key server, and the key server uses a key
graph for group key management. Key graph is a directed
acyclic graph with two types of nodes: u-nodes, which
represent users, and k-nodes, which represent keys. User u is
given key k if and only if there is a directed path from u-
node u to k-node k in the key graph. Key tree and key star
are two important types of key graph. In a key tree, the k-
nodes and u-nodes are organized as a tree. Key star is a
special key tree where tree degree equals group size.

2.1 Key Tree
In a key tree, the root is the group key, leaf nodes are

individual keys, and the other nodes are auxiliary keys.
Consider a group of 9 user’s u1... u9. A key tree of degree 3
is shown in Figure 1(a).The Key server follows three
strategies to distribute the new keys to the remaining users:
user-oriented, key-oriented, and group-oriented. Using
group-oriented rekeying, the key server constructs the rekey
message and multicasts it to the whole group.

Fig 1: Example of a key tree.

From the above example, we can see that both the server’s
computation and communication costs are proportional to
the number of encryptions to be performed (5 for the first
example and 4 for the second example). Thus, we use server
cost to mean the number of encryptions the key server has to
perform. If the key tree degree is d and there are N users,
assuming the key tree is a completely balanced tree, the
server cost is 2 log d N for a join and d log d N -1 for a
leave.

2.2 Key Star
Key star is a special case of key tree where tree root

degree equals group size. Key star models the
straightforward approach. In key star, every user has two
keys: its individual key and the group key. There is no
auxiliary key. Figure 2(a) shows the key star for 4 users.
Suppose u4 wants to leave the group (from Figure 2(a) to
2(b)), the key server encrypts the new group key k1-3 using

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

133

every user’s individual key, puts the encrypted keys in a
message and multicasts it to the whole group. Clearly, using
a key star, the server cost is 2 for a join and N -1 for a leave.

Fig 2: Example of a key star.

3. INDIVIDUAL REKEYING
Ideally, a departed user should be expelled from the

group, and a new user be accepted to the group, as early as
possible. Thus, the key server should rekey immediately
after receiving a join or leave request, we call this individual
rekeying. Individual rekeying, however, has two problems:
Inefficiency and an out-of-sync problem between keys and
data.
3.1. Inefficiency

Individual rekeying is relatively inefficient for two
reasons. First, the rekey message has to be signed for
authentication purpose; otherwise a compromised group user
can send out bogus rekey messages and mess up the whole
system. Signing operation is computationally expensive. If,
for every single request, the key server has to generate and
sign a rekey message, the signing operation alone will place
a heavy burden on the key server, especially when requests
are frequent.

Second, consider two leaves that happen one after
another. The key server generates two sets of new keys
(group key and auxiliary keys) for these two leaves. These
two leaves, however, might temporally happen so close to
each other that the first set of new keys are actually not used
and are immediately replaced by the second set of new keys.
When requests are frequent, like during the startup or
teardown of a multicast session, many new keys may be
generated and distributed, while not used at all. This is a
waste of server cost.
3.2 Out-of-Sync Problem

Individual rekeying also has the following out-of-sync
problem between keys and data: a user might receive a data
message encrypted by an old group key, or it might receive a
data message encrypted with a group key that it has not
received yet. Figure 3 shows an example of this problem. In
this example, at time t1, u2 receives a data message
encrypted with group key GK(2) from u1, but u2 has not
received GK(2); at time t2, u1 receives a data message
encrypted with group key GK(0) from u2, but u1’s current
group key is GK(2). Delay of reliable rekey message
delivery can be large and variable. Thus, this out-of-sync
problem may require a user to keep many old group keys,
and/or buffer a large amount of data encrypted with group
keys that it has not received.

Fig 3: Out-of-sync problem

4. BATCH REKEYING
To address the above two problems, we propose the use

of periodic batch rekeying[1]. In batch rekeying, the key
server waits for a period of time, called a rekey interval,
collects the entire join and leave requests during the interval,
generates new keys, constructs a rekey message and
multicasts the rekey message. Batch rekeying improves
efficiency because it reduces the number of rekey messages
to be signed: one for a batch of requests, instead of one for
each. Batch rekeying also takes advantage of the possible
overlap of new keys for multiple rekey requests, and thus
reduces the possibility of generating new keys that will not
be used.
5. MARKING ALGORITHM

Marking algorithm for the key server to process a batch of
requests. Obviously, if the key server uses key star, batch
rekeying is a straightforward extension to individual
rekeying. Thus, the marking algorithm applies to key tree
only. We analyze the resulting server processing cost for
batch rekeying. We use J to denote the number of joins in a
batch and L to denote the number of leaves in a batch. We
assume that within a batch, a user will not first join then
leave, or first leave then join.
5.1 Marking Algorithm

Given a batch of requests, the main task for the key server
is to identify which keys should be added, deleted, or
changed. In individual rekeying, all the keys on the path
from the request location to the root of the key tree have to
be changed. When there are multiple requests, there are
multiple paths. These paths form a subtree, called rekey
subtree, which includes all the keys to be added or changed.
The rekey subtree does not include individual keys. The key
server cannot control which users might leave, but it can
control where in the key tree to place the new users. Thus,
the key server should carefully place the new users (if there
were any) so that the number of encryptions it has to
perform is minimized.

 The algorithms as follows

Case 1: J = L.
1. Replace leaves by joins.
2. Mark all the nodes from the replacement
 locations to the root UPDATE.
Case 2: J < L
1. Out of the L leaves, pick J shallowest (smallest
 height) leaves. 2 Replace these J leaves with the
 J joins.
2. Mark all the nodes from the root to the leave and
 replacement locations UPDATE or DELETE.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

134

 Those leaving nodes without joining
 replacements are marked DELETE. A non-leaf
 node is marked DELETE if and
 only if all of its children are marked
 DELETE.
Case 3: J > Land L = 0.
1. Find a shallowest leaf node v. Remove v
 from the tree.
2. Construct T, a complete but not necessarily
 balanced tree [11], that has all the new users
 and v as leaf nodes. The other nodes of T are
 new keys.
3. Attach T to the old location of v.
4. Mark all T’s internal nodes NEW and mark all
 the nodes from the root to the parent of v’s old
 location UPDATE.
Case 4: J > Land L > 0.
1. Replace all leaves by joins.
2. Find a shallowest leaf node, v, among the
 replacement locations. Remove V from the tree.
3. Construct a complete tree T that has the extra
 joins and v as leaf nodes. The other nodes of T
 are new keys.
4. Attach T to the old location of v.
5. Mark all T’s internal nodes NEW and mark all
 the keys from the replacement locations (except
 the old location of v) to the root UPDATE.

After marking the key tree, the key server removes all
nodes that are marked DELETE. The nodes marked
UPDATE or NEW form the rekey subtree. The key server
then traverses the rekey subtree, generates new keys,
encrypts every new key by each of its children, constructs
and multicasts the rekey message. It is not hard to see that
the running time of the marking algorithm is O ((J + L) logd
N + N).
5.2 Keeping the Key Tree Balanced

To achieve best performance, a key tree should be kept
more or less balanced. Our marking algorithm aims to keep
the tree balanced across multiple batches, by adding extra
joins to the shallowest leaf node of the tree in each batch.
However, depending on the actual locations of the requests,
even if the key tree starts complete and balanced, it is
possible that the key tree may grow unbalanced after some
number of batches. For example, many users located close to
each other in the key tree may decide to leave at the same
time. It is impossible to keep the key tree balanced all the
time, without incurring extra cost.

6. 2-3 TREE or B-TREE (of order m=3)

Definition: A 2-3 tree is a tree in which each vertex which
is not a leaf has 2 or 3 sons, and every path form the root to
a leaf is of the same length. Note that the tree consisting of
single vertex is a 2-3 tree. Let T be a 2-3 tree of height ‘h’.
The number of vertices of T is between 2h+1-1 and (3h+1-1)/2,
and the number of leaves is between 2h and 3h.

Fig 4: Examples for 2-3 Trees.

A 2-3 tree can represent a linearly ordered set S by
assigning the elements of the set to the leaves of the tree. We
can use E[l] to denote the element stored at leaf ‘l’. We can
use 2-3 trees to implement dictionaries (Insert, Delete,
Member), Priority Queue (Insert, Delete, Min), Mergable
Heap (Insert, Delete, Union, Min), Concatenable Queue
(Insert, Delete, Find, Concatenate, Split). Depends on the
application we assign the elements of set to leaves of the
tree. For ex: In case dictionary, we assign the elements in
increasing order from left to right. At each vertex ‘v’ which
is not a leaf, we need two additional pieces of information. L
[v] and M [v]. L [v] is the largest element of S assigned to
the sub tree whose root is the leftmost son of v; M [v] is the
largest element of S assigned to the sub tree whose root is
the second son v. The values of L and M attached to the
vertices enable us to start at the root and search for an
element in a manner analogous to binary search. The time to
find any element is proportional to the height of the tree
(h=O (logn)). In all other cases no restriction in order to
assign the elements as leaves.
6.1 Insertion of new element into a 2-3 Tree

To insert a new element ‘a’ into a 2-3 tree we must locate
the position for the new leaf ‘l’ that will contain ‘a’. This is
done by trying to locate element a in the tree. Assuming the
tree contains more than one element, the search for ‘a’
terminates at a vertex ‘f’ such that ‘f’ has either two or three
leaves as sons.

If ‘f’ has only two leaves l1 and l2, we make ‘l’ a son of ‘f’.
If a < E[l1], we make l the leftmost son of ‘f’ and set L[f]=a
and M[f]=E[l1]; if E[l1]<a<E[l2], we make l the middle son
of ‘f’ and set M[f]=a; if E[l2]<a, we make ‘l’ the third son of
‘f’. The L and M values of some proper ancestors of ‘f’ may
have to be changed in the latter case. Now suppose ‘f’
already has three leaves, l1, l2, and l3. We make ‘l’ the
appropriate son of ‘f’. Vertex ‘f’ now has four sons. To
maintain the 2-3 tree property, we create a new vertex ‘g’.
We keep the two left most sons as sons of ‘f’, but change the
two right most sons into sons of ‘g’. We then make ‘g’ a
brother of vertex ‘f’ by making ‘g’ a son of the father of ‘f’.
If the father of ‘f’ had two sons, we stop here. If the father of
‘f’ had three sons, we must repeat this procedure recursively
until all vertices in the tree have at most three sons. If the
root is give four sons, we create a new root with two new
sons, each of which has two of the four sons of the former
root.

Algorithm 6.1: Insertion Operation

Step 1: If T consists of a single leaf ‘l’ labeled ‘b’, then
create a new root r'. Create a new leaf ‘v’ labeled ‘a’. Make
‘l’ and ‘v’ sons of r', making ‘l’ the left son if b<a,
otherwise, making ‘l’ the right son.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

135

Step 2: If T has more than one vertex, let f=SEARCH (a,
r), where SEARCH is the procedure described in successive
algorithms. Create a new leaf ‘l’ labeled ‘a’. If ‘f’ has two
sons labeled b1 and b2, and then make ‘l’ the appropriate son
of ‘f’. Make ‘l’ the left son if a<b1, the middle son if
b1<a<b2, the right son if b2 <a. If ‘f’ has three sons, make ‘l’
the appropriate son of ‘f’ and then call ADDSON (f) to
incorporate ‘f’ and its four sons into T. ADDSON is the
procedure described next. Adjust the values of L and M
along the path from ‘a’ to the root to account for the
presence of ‘a’.
Algorithm 6.2 SEARCH (a, r)
{
if any son of r is a leaf then return r;
 else
 {
 let si be the ith son of r;
 if a<=L[r] then return SEARCH (a, s1);
 else
 if r has two sons or a<=M[r] then return
 SEARCH(a, s2);
 else
 return SEARCH(a, s3);
 }
}
Algorithm 6.3 ADDSON (v)
{
 create a new vertex v';
 make the two rightmost sons of v the left and
 right sons of v';
if v has no father then
 {
 create a new root r;
 make v the left son and v' the right son of r;
 }
else
 {
 let ‘f’ be the father of v;
 make v' a son of ‘f’ immediately to the right
 of v;
 if ‘f’ now has four sons then ADDSON(f);
 }
}

Fig 5: (a) 2-3 Tree before insertion.

(b) 2-3 Tree after inserting 3 in fig 9 a.

Fig5: continues (c) 2-3 Tree after inserting 4 in 5a.

6.2 Deletion operation
An element ‘a’ can be deleted from a 2-3 tree in
essentially the reverse of the manner by which an element
is inserted. Suppose element ‘a’ is the label of leaf ‘l’.
There are three cases to consider.

CASE 1: If ‘l’ is the root, remove ‘l’.
CASE 2: If ‘l’ is the son of a vertex having three sons,

remove ‘l’.
CASE 3: If ‘l’ is the son of a vertex ‘f’ having two sons ‘s’

and ‘l’, then there are two possibilities:
 (a). ‘f’ is the root. Remove ‘l’ and ‘f’, and
 leave the remaining son ‘s’ as the root.
 (b). ‘f’ is not the root. Suppose ‘f’ has a brother ‘g’ to its

left. A brother to the right is handled similarly. If ‘g’
has only two sons, make ‘s’ the right most son of ‘g’,
remove ‘l’, and call the deletion procedure
recursively to delete ‘f’. If ‘g’ has three sons, make
the right most son of ‘g’ be the left son of ‘f’ and
remove ‘l’ from the tree.

Fig 6: 2-3 Tree after deleting of 4 from fig 9 c.

Fig 7: Node sk1 splits into nodes sk1' and sk1". B-tree

order m=3.

6.3 Splitting One Node Costs m+1 Multicast Messages

Rebalancing a B-tree after insertion is achieved by node
splitting. While the rekeying message cost is one multicast
message per tree level without node splitting, it requires
m+1 multicast messages per level with node splitting. Above
figure 7 shows an example of node splitting. Since the B-tree
order is equal to 3, an internal node can have at most three
children. Therefore, node sk1 needs to be split into two
nodes, sk1' and sk1". The subgroup keys, sk1' and sk1",
should be randomly generated and can’t be the same as sk1.
Otherwise, assume sk1'= sk1, the members in the subgroup

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

136

sk1" know sk1, which gives them the ability to trace the
subgroup keys from sk1' (=sk1) up and eventually to get the
group key, even if, later on, they leave the group. To achieve
further confidentiality, the server could change sk1' =sk1)
when a member in the subgroup sk1" leaves. However, since
sk1' (=sk1) is not on the path from the root to the members in
sk1", changing sk1' (=sk1) requires the server to remember
which keys out of the path are known by the members in the
subgroup sk1". This causes the rekeying procedure to
become complicated and may raise the rekeying cost to as
high as n (when a leaving member knows many subgroup
keys out of the path).

Following nodes splitting, the new subgroup keys sk1' and
sk1" are distributed in four multicast messages, sk2{sk1�
sk1'}, sk3{sk1� sk1'}, sk4{sk1� sk1"}, and sk5{sk1� sk1"}.
Notice that we can’t use sk1{sk1� sk1'}and sk1{sk1� sk1"}
because the members in the subgroups sk1' and sk1" know
sk1 and can decrypt both messages. Therefore, splitting one
node requires m+1 multicast message. Since insertion may
split up to h nodes and a unicast message of size h is used to
tell the new member the subgroup keys, the worst-case
rekeying cost for inserting a new member is (m+2)h.

7. NSBHO (NON-SPLIT BALANCING HIGH-ORDER)
TREE

In this section, we first give the definition of the NSBHO
tree[2], then, we compare the height of the NSBHO tree with
that of the standard B-tree of the same order. The algorithm
for inserting an external node into the NSBHO tree and
removing an external node from NSBHO tree is discussed in
next successive sections.

We call the nodes for group member’s external nodes.
Square nodes are external nodes and all other nodes are
internal nodes. We define the level of node ‘x’ as
x.level=x.parent.level+1 and root. Level=0. Assuming that
‘h’ is the height of the tree (the external nodes are excluded),
then the external nodes are at level ‘h’. In following figure,
the external nodes are at level 3 and the tree height is 3.

Fig.8: An NSBHO tree of order 3. The shaded nodes are in

the special path (SP). The tree height h=3(the external
nodes are excluded).

Definition: An empty tree is an NSBHO (Non-Split
Balancing High-Order) tree of order m. A tree with only one
external node and no internal nodes is an NSBHO tree of
order m. If an NSBHO tree of order m is not empty and has
more than one external node, it has the following properties
(d =m/2):
P1. The root has at least two children and at most m
children.
P2. All external nodes are at the same level.

P3. All internal nodes other than the nodes in special path
(defined below) and the root have at least d children and at
most m children.
P4. There is at most one special path.
P5. A special path (SP) is a sequence of internal nodes, (z0,
z1, . . . , zk), where zi is an ancestor of zi-1 for 0<= i < k, zi
has at least one child and at most d-1 children for 0<= i<=
k, and z0 is not the root.

Above figure. 8 give an example of an NSBHO tree of
order 3. The shaded nodes are in special path. Node z0 is the
parent certainly an ancestor, of node z1. The difference
between the NSBHO tree and the standard B-tree is that the
NSBHO tree is not a search tree and it allows a special path
on which the nodes do not satisfy the property of a standard
B-tree node.

7.1. Height of the NSBHO Tree

Lemma 1. Let h be the height of an order-m NSBHO tree, n
be the number of external nodes, and d =m/2 .
1. mh >= n >=dh-1+ 1,
2. logd(n-1) +1>=h>= logmn.

 Proof. We first prove the upper bound on n. Level 0 has
one node, level 1 has at most m nodes, level 2 has at most
m2 nodes, . . . , level i has at most mi nodes. Hence, there are
at most mh external nodes.
Now, we prove the lower bound on n. Level 0 has one node.
We claim that level i (i > 0) has at least di-1+1 node. We
prove this claim by induction. Since the root is never in the
special path, level 1 has at least two nodes. Assume level i-1
has at least di-2+1 node. At most one of them may be in the
special path (Definition 1). The nodes not in the special path
have at least d children per node. Thus, level i has at least di-

1+1 nodes. This proves the lower bound on n. The bound on
h follows the bound on n.
Lemma 2. Let h be the height of an order-m B-tree, n be the
number of external nodes, and d=m/2 .
 1.mh >= n >= 2dh-1,
 2.logd(n/2)+1>=h>=logmn.

Proof. It is easy to see that mh>= n since each internal
node can have at most m children. Since all the internal B-
tree nodes except the root have at least d children and the
root has at least two children, the minimum number of nodes
at level 0, 1, 2, 3, . . . , h is 1, 2, 2d, 2d2, . . . , 2dh-1,
respectively. Therefore, there are at least 2dh-1 external
nodes. The bound on h follows the bound on n.

7.2. Insert an External Node
When a new member joins the group, an external node z is
created for the new member and is inserted into the NSBHO
tree. The general idea is to create a chain of nodes with z as
the tail and then attach the head of the chain as a child of a
suitable internal node of the current NSBHO tree. The
purpose of the chain is to put z at the correct level of the
external nodes, thus the length of the chain is such that the
new external node z is at the same level as the existing
external nodes.

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

137

Fig.9: An external node z is inserted into the NSBHO tree
specified in 4.1 using the insertion point. (a) z0, (b) z1, (c)
root. The resulting trees at (a) and (c) are not NSBHO
trees. The resulting tree at (b), however, is an NSBHO tree.

The key is to find a suitable insert point (internal node)

such that the resulting tree is still an NSBHO tree. When the
special path SP is not empty, a node belongs to SP with the
largest level is the suitable insert point. Recall that
x.level=x.parent.level+1 and root. level=0. In Fig 13, the
special path is (z0 , z1), z0.level=1, and z1.level=2, thus z1
is the suitable insert point. Fig. 13b shows the resulting tree
using z1 as the insert point. One may verify that it is an
NSBHO tree. z0 can’t be used as the insert point because,
otherwise, the resulting tree (as shown in Fig. 13a) has two
special paths, (z1) and(x0).The root can’t be used as the
insert point either because, otherwise, the resulting tree (as
shown in Fig. 13c) has two special paths, (z0,z1) and (x0 ,
x1). When the special path SP is empty, an arbitrary internal
node that has fewer than m children can be the insert point.
When all the internal nodes are full (i.e., having m children
each), a new root will be created which becomes the insert
point.

The algorithm for inserting an external node z is listed
here. If the tree is empty, z becomes the root. Otherwise,
getInsertPoint algorithm is invoked. If getInsertPoint returns
null, a new root y is created and the current root becomes a
child of the new root. Now, y has fewer than m children. A
chain of internal nodes (x0, x1, . . ., xl) is created , where
xi=xi+1.parent for 0<=i < l, x0.level=y.level+1, and
xl.level=h-1. The purpose of the chain is to put z at the
correct level of the external nodes. The new external node z
becomes a child of xl and x0 becomes a child of y. In the
case of y.level=h-1, there is no need to create a chain and,
thus, z itself becomes a child of y. getInsertPoint algorithm
returns null if there is no internal node or all internal nodes
are full. If SP is not empty, a node belongs to SP with the
largest level is returned. Otherwise, a nonfull internal node
does not belong to SP is returned.
 Special Path (SP) can be maintained by a simple array of
size h. Adding (removing) a node to (from) SP can be done
in O(1) time. Returning the node belongs to SP with the
largest level is the key to making the insertion algorithm
work.

Algorithm for inserting an External Node ‘z ‘, where ‘z’
is an external node.

Algorithms 7.1 insert (TreeNode z)
{
 If (root==null){root=z;return;}
 TreeNode y=getInsertPoint ();
 If(y==null)
 { y=new TreeNode;

 The Current root becomes a child
 of y;
 root=y;
 }
 create a chain of nodes as described;
 attach z to the end of the chain;
 The root of this chain becomes a
 child of y;
}

Algorithm 7.2 getInsertPoint ()
{ If(no internal node or all internal nodes
 are full)
 return null;
 if(SP is not empty)
 return the node belongs to SP
 with the largest level;
 return an arbitrary non-full
 internal node does not belongs
 to SP.
}

7.3. Remove an External Node
No rebalancing is needed after an external node z is
removed if the parent of z is not one child short (i.e., if
z.parent is in SP, z.parent should have at least one child and,
if z.parent is not in SP, z.parent should have at least d
children). The tree rebalancing is carried out only when
z.parent is one child short. If z.parent is in SP, “one child
short” means z.parent has no children left and, thus, z.parent
can be removed, which causes z.parent.parent to lose a child.
We need to move one level up the tree and check
z.parent.parent to see whether or not rebalancing is
necessary there. If z.parent is not in SP, we will use the
standard B-tree technique (i.e., borrowing a child from
sibling or merging z.parent with its sibling). If it is possible
for z.parent to borrow a child from its sibling, rebalancing
ends. Merging z.parent with its sibling causes z.parent.parent
to lose a child. Thus, we need to move one level up and
check z.parent.parent. Due to the existence of SP,
z.parent.parent may have only one child. In this case,
borrowing or merging is not possible. However, we can add
z.parent to SP without violating the NSBHO property and
there by terminating the rebalancing.

Algorithm for removing a ‘z’, where ‘z’ is an external
node.

Algorithms 7.3 remove (TreeNode z)
 { If(z==root) { root=null; return;}
 TreeNode pz=z.parent;
 pz.removeChild (z);
 z=pz;
 while (z!=root and (z.size==d-1
 or z.size==0))
 { pz=z.parent;
 if(z belongs to SP)
 { remove z from SP;
 pz.removeChild(z); delete z;
 z=pz;
 }

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

138

 else{ TreeNode sz=richSibling(z);
 If(sz exists)
 {move a child from sz to z;
 z=root;}
 if(pz.size>1)
 { Merge z with a
 sibling of z; z=pz; }
 else
 { Add z to SP;
 z=root;}
 }
 }
 if(z==root and z.size <2)
 {root= the only child of z;
 if(root belong to SP)
 remove root from SP;
 }
}

Algorithm 7.3 describes the procedure for removing an
external node ‘z’. The siblings of ‘z’ include all the
children of z.parent except z. The function richSibling(z)
returns a sibling of sz of ‘z’ such that (sz belongs to SP
and sz.size >1) or (sz does not belongs to SP and sz.size
>d). However, if no such sz exists, richSibling(z) return
null.

 The while loop is executed when z is an internal node, z
is not the root, and z is one child short (deficiency). If z is in
SP , “one child short” means z has no child, thus z can be
deleted. If z is not in SP , “one child short” means z has d-1
children. The deficiency can be compensated for by
borrowing a child from the sibling of z if z has a rich sibling,
by merging with a sibling if z has at least one sibling, or by
adding z into SP if z has no sibling. The deficiency may
propagate one level up, thus we need to move one level up
to check the parent of z. In other cases, we terminate the
while loop by setting z to the root. If the deficiency
propagates up to the root, the tree height is decreased by
one.

8. ANALYSIS
 We analyze the server processing cost for batch rekeying.
We consider the worst case and average case and compare
batch rekeying against individual rekeying.
Key star’s batch rekeying server cost, denoted as RB (N, J,
L) is:

{(01
0),, =+

>−+= ifLJ
LifLJNB LJNR

Thus, our analysis mainly focuses on key trees. For the
purpose of analysis, we assume that the key tree is a
complete and balanced tree at the beginning of a batch, and
that each current user has equal probability of leaving.
Let d be the key tree degree, N be the group size at the
beginning of a batch, h be the height of the key tree (h = logd
N), W(N,d,J, L) be the worst case batch rekeying server
cost, and E(N,d,J, L) be the average case batch rekeying
server cost.

8.1 Worst Case Analysis
The marking algorithm can control where to place joins, but
cannot control where leaves happen. Thus, worst case
analysis mainly considers how the locations of leaves affect
the server cost. Since the marking algorithm takes different
operations for four cases, worst case analysis is also divided
into four cases.
Case 1: J = L.
For simplicity, we first assume L = d k for some integer k.
When J = L, the worst case happens when the leaves are
evenly distributed across the N leaf nodes in the key tree.
The server cost for this case is:

() ()
1
1,,,

−
−+==

d
Ld

L
NLdLogLJdNW d

If L is not some power of d, suppose L = dk + r, 0 < r < (d -
1) dk, then in the worst case, each of the r additional leaves
adds d (h - k - 1) to the total cost
Thus,

() () () ()1
1

1,,, 1 −−+








−
−+−== + khrd

d
ddkhdLJdNW

k
k

In other words, if dk < L < dk+1, W= (N, d, J, L) grows
linearly between W= (N, d, J, dk) and W= (N, d, J, dk+1).

Fig 10: Worst case analysis.

Case 2: J < L
The analysis for this case is similar to the previous case. The
only difference is that there are only N - (L - J) users left in
this case. Thus,
 W < (N, d, J, L) = W = (N, d, L, L) - (L - J)
Case 3: J > Land L = 0.
 In this case, the marking algorithm has full control of
the server cost. It is not hard to see that a complete d- ary

tree with n leaves is of size









−
−
1
1

d
dn ,Thus, T’s size is

()







−
−+

1
11

d
Jd and there are logd N + 1 nodes from the root

to v. Thus:

() N
d
dJOJdNW dlog2

1
,,, +






−
=>

Case 4: J > Land L > 0.
When there are more joins than leaves, the analysis is a
combination of cases 1 and 3. Thus:

() () ()







−
−+==>
1

,,,,,,
d

LJdLLdNWLJdNW

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

139

8.2 Average Case Analysis
The server cost depends on the number of nodes belonging
to the rekey subtree, and the number of children each node
has. Thus, our technique for average case analysis is to
consider the probability that an individual node belongs to
the rekey subtree, and to consider the node’s expected
number of children. Again, we consider the following four
cases.

Fig 11: Average case analysis.

Case 1: J = L.
This case forms the basis of our analysis for the other cases.
Let the root of the key tree be at level 0, and the leaf nodes
be at level h, where h = logd N. Let T(x) be the sub tree
rooted at node x and L(x) be the leaf nodes of T(x).
Consider a node v at level, 0 <= l <= h - 1 (see Figure 19). V
belongs to the rekey sub tree if and only if there is at least
one leave in L (v). Assuming every current user has equal
probability of leaving, there are { N

L ways to pick L leaving
users out of N users. Among these many ways,

()ldN
LN /− of them have no leaves in L(x). Thus, the

probability that v belongs to the rekey sub tree is

()
() 












 −
− N

L

dN
L

l

N /

1 Therefore,

() ()
() 












 −
−== ∑

−

=
N
L

dN
L

h

l

l
l

NddLJdNE
/1

0
1,,,

Case 2: J < L
When J < L, we should take into account the probability that
some nodes might be marked DELETE and pruned from the
tree. A node v is pruned if and only if all nodes in L(v) are
leaves and none of them are replaced by joins. Using a
similar technique as the previous case, we know the
probability that a node at level l is pruned is

()
()

()
()

()
()N

dN

JL
dN

L
J

dN
J

N
L

dNN
dNL

l

l

ll

l L

/

/
//

/ .
−−

− =
−

Thus

() () ()
∑
=

−

−==<
h

l
N

dN

JL
dNl

l

l
dLJdNELJdNE

0 /

/,,,,,,

Case 3: J > L and L = 0.
For this case,
 E> (N, d, J, 0) = W > (N, d, J, 0)
Case 4: J > L and L > 0.
The analysis for this case is a combination of cases 1 and
3.Thus:

() () 






−
−+==>
1

)(,,,,,,
d

LJdLLdNELJdNE

8.3 Batch vs. Individual Rekeying
In this section, we show that batch rekeying saves server cost
substantially over individual rekeying. The actual save
depends on whether the key server uses key star or key tree.
8.3.1 Key Star
Let RI (N, J, L) be the cost for processing J joins and L
leaves individually. Clearly,

() (){ 02
021,, =

>+−= JifL
JifLLNI LJNR

Thus, the difference between batch rekeying and individual
rekeying is:

() () { 01
0)1(,,,, =−

>+−=− ifLJ
JifLLNBI LJNRLJNR

The difference is substantial, especially when J and L are
large.

8.3.2 Key Tree
We have mentioned that using key tree for individual
rekeying; the server cost is d logd N - 1 for a leave and 2 logd
N for a join.

Let S (N, d, J, L) be the server cost for rekeying a batch of J
joins and L leaves individually. Clearly,
S (N, d, J, L) = (dL + 2J) logd N – L

9. RESULTS
9.1 Table: Comparison Results for various inputs.
(Assuming initial size of the tree 1000).

(Note: Inputs (i/p): a/b refers among ‘a’ operations,
 b no. of insertions and a-b deletions).

Tree 2-3 Tree NSBHO Tree
Input Avg Max Avg Max

3/1 22 25 13 14
5/2 21 26 16 19
8/4 23 26 16 19

10/5 23 25 17 19
12/6 22 26 15 19
15/8 23 31 19 19
18/9 22 31 16 19
20/1 20 31 15 19
22/1 22 31 19 19

25/13 23 31 15 19
28/14 20 31 16 21
30/15 21 31 16 21
34/17 22 31 15 19
35/18 21 31 15 19
38/19 22 31 16 19
40/20 22 31 15 19
44/22 22 31 15 21
45/22 22 31 16 19
48/24 22 31 15 19
50/25 22 31 16 19

Int. J. Advanced Networking and Applications
Volume: 01, Issue: 02, Pages: 131-140 (2009)

140

9.2. Graphs

Btree Order 3

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30 35 40 45

Operations

Re
ke

yi
ng

 m
es

sa
ge

 c
os

t

Average costs
Maximum costs

(a) 2-3 Tree(B-Tree of order 3) Re keying Message Costs
for 50 Random Insertions (50%) / Deletions (50%). Initial
Tree Size is 1000.

NSBTree Order 3

14

16

18

20

22

24

26

28

30

32

0 5 10 15 20 25 30 35 40 45
Operations

R
ek

ey
in

g
m

es
sa

ge
 c

os
t

Average costs
Maximum costs

(b) NSBHO Tree of order 3.Re keying Message Costs for
50 Random Insertions (50%) / Deletions (50%). Initial
Tree Size is 1000.

10. CONCLUSION
This paper addressed the scalability problem of group key

management [1][2]. We identified two problems with
individual rekeying: inefficiency and an out-of-sync problem
between keys and data. We proposed the use of periodic
batch rekeying to improve the key server’s performance and
alleviate the out-of-sync problem. We devised a marking
algorithm for the key server to process a batch of join and
leave requests, and we analyzed the key server’s processing
cost for batch rekeying. Our results show that batch
rekeying, compared to individual rekeying, saves server cost
substantially. We also show that when the number of
requests is not large in a batch, four is the best key tree
degree; otherwise, key star outperforms small-degree key
trees. The hierarchical key-tree approach is an efficient way
to achieve logarithmic rekeying costs for secure multicast
key management given that the underlying tree is balanced.
We have developed an NSBHO tree. Unlike the B-tree
scheme [10], our NSBHO tree does not use node splitting to
balance the tree. As a result, the worst-case rekeying cost of
our NSBHO tree for a new member joining is 2h, while that
of the B-tree scheme is (m+2)h, where h is the
corresponding tree height and m is the order of the tree. For
a member leaving, the B-tree scheme and our NSBHO-tree
scheme have the same worst case rekeying cost. Our results
confirm that the NSBHO tree is superior to the B-tree in

terms of the worst-case rekeying performance. In addition, it
has better average-case rekeying performance.

REFERENCES
[1] Haibin Lu: A Novel High-Order Tree for secure
multicast key management. IEEE Transactions on
Computers, vol 54, No. 2, Feb 2005.

[2] Xiaozhou Steve Li,Yang Richard Yang,Mohamed
G.Gouda,Simon S.Lam: Batch Rekeying For Secure Group
Communication. ACM Paper, May 2001.

[3] A.Ballardie. Scalable Multicast Key Distribution, RFC
1949, May 1996

[4] H.Harney, C. Muckenhirn, and T.Rivers. Group key
management protocol architecture, RFC 2094, July 1997.

[5] H.Harney, C. Muckenhirn, and T.Rivers. Group key
management protocol specification, RFC 2093, July 1997.

[6] M.J.Moyer, J.R.Rao, and P.Rohatgi. Maintaining
Balanced Key Trees for secure multicast, INTERNET-
DRAFT, June 1999.

[7] D. Wallner, E.Harder, and Ryan Agee. Key Management
for Multicast: Issues and Architectures, INTERNET-
DRAFT, September 1998.

[8] David Balenson, David McGrew, and Alan Sherman.
Key Management for Large Dynamic Groups: One-way
Function Trees and Amortized Initialization, INTERNET-
DRAFT,1999.

[9] Key Management for Multicast: Issues and
Architectures, RFC 2627, Sep 1999.

[10] Li,Yang,Gouda,Lam. Batch Rekeying for secure group
communications,www10, May 1-5,2001,Hong Kong.

[11] J.Goshi and R.E.Ladner, Algorithms for Dynamic
Multicast Key Distribution Trees, Proc. ACM Symp.
Principles of Distributed Computing (PODC), 2003.

Authors Biography
Ramesh Kumar .P received B.Tech (CSE),
M.Tech (CSE). He is currently serving as
Sr.Lecturer in the Department of Computer
Science and Engineering, V.R.Siddhartha
Engineering College. His research interest lies

in the area of Ear Biometrics and Cryptography, Parallel
Computing and Key Management. Member of CSI, IETE
and ISTE.

P. Srinivasulu received his B.Tech(ECE),
M.Tech (CSE), (PhD). He is currently working as
Assistant Professor in V R Siddhartha
Engineering College, in the Department of

Computer Science and Engineering, Vijayawada, Andhra
Pradesh. His research interest includes Data Mining and
Data Warehousing, Computer Networks, Network security
and Parallel Computing. He is the member of ISTE, CSI.

